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Abstract1

Bayesian hierarchical state-space models are a means of modeling fish population dynamics2

while accounting for both demographic and environmental stochasticity, observation noise,3

and parameter uncertainty. Sequential importance sampling can be used to generate pos-4

terior distributions for parameters, unobserved states, and random effects for population5

models with realistic dynamics and error distributions. Such a state-space model was fit to6

the Sacramento River winter chinook salmon (Oncorhynchus tshawytscha) population where7

a key objective was to develop a tool for predicting juvenile outmigration based on multiple8

sources of data. One-year-ahead 90% prediction intervals based on 1992-2003 data, while9

relatively wide, did include estimated values for 2004. Parameter estimates for the juve-10

nile production function based on the state-space model formulation differed sizeably from11

Bayesian estimates that ignored autocorrelation and observation noise.12

Key words: chinook salmon, endangered species, forecasting, sequential importance sam-13

pling, state-space model.14
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1 Introduction1

Variation in the numbers, age and sex structure in an animal population can be viewed as2

a function of stochastic processes that include survival, maturation, reproduction, harvest,3

and movement (Caswell 2001). For many animal populations, the numbers in each stage4

cannot be measured exactly and information about abundance and structure is based on5

sample surveys and, in the case of harvested fish populations, catch data. The resulting6

two, potentially multivariate, time series, one representing the true but unobservable popu-7

lation structure and the other the observed data, can be modeled using a state-space model8

(SSM) (Harvey 1989). We will call the development or evolution of the population structure9

the state process and the measurements taken on the populations the observation process10

(Buckland et al. 2004).11

A more mathematical definition of a SSM is given later but here we discuss some general12

issues. State-space models can be used to provide three kinds of inference. One is to13

estimate the unobserved population structure given the observed data and another is to14

estimate parameters that characterize the state and observation processes. In the case of fish15

populations such parameters can include vital rates (survival, fecundity, and maturation),16

harvest rates, and movement probabilities in the case of spatially structured populations. A17

third inferential objective is to predict future population values.18

An advantage of SSMs is that they can account for several distinct types of randomness or19

uncertainty in the state and observation processes. Ignoring sources of uncertainty can lead to20

overly optimistic assessments of the overall uncertainty of inferences. There is demographic21

uncertainty: for a particular set of parameters, say vital rates, and a given population22

structure at time t, the population structure at time t+1 varies at random; e.g., given 10023

individuals alive at time t with a survival rate of 0.8, the observed number alive at time t+124

could be 77, 80, 83, etc. There is environmental stochasticity: the parameters themselves25
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are stochastic, varying with time, with environmental conditions; e.g., survival rates are on1

average 0.8 but vary stochastically from 0.6 to 0.9, say. There is parameter uncertainty: the2

parameters are usually never known with certainty and must be estimated from observable3

data. There is observation or measurement error: observations or estimates of states rarely4

equal the true state values. Lastly there is model uncertainty: the structural form for the5

state and observation processes is at best an approximation to reality and alternative (still6

approximate) models could have been used.7

We fit a Bayesian hierarchical state-space model to model the population dynamics of the8

Sacramento River winter run chinook salmon population. The model accounts for four of the9

above types of uncertainty, excluding model uncertainty since just a single model was con-10

sidered. Sacramento River winter chinook salmon (Oncorhynchus tshawytscha) population11

levels have severely declined during the 20th century due to blockage of historical spawning12

areas by Shasta Dam, extensive degradation of remaining spawning, rearing and migration13

habitats, and overfishing (NMFS 1997) (Figure 1). Estimates of winter run returns to Red14

Bluff Diversion Dam (RBDD) (rkm 391) decreased from 117,800 in 1969 to 1,156 in 1980,15

which led to the stock being placed on the United States endangered species list in 1994.16

Subsequent management actions to try to increase the stock’s abundance include changes in17

ocean fishing regulations, operations of Red Bluff Diversion (a partial barrier to fish passage18

when in operation), numerous habitat restoration actions, and regulation of certain other19

activities that potentially harm winter chinook.20

Estimates of juvenile salmon numbers are a crucial component of management of the win-21

ter run. One of the management actions taken to increase abundance has been to regulate22

water export during the period of juvenile winter chinook salmon outmigration. The two23

largest water export facilities are the State Water Project’s Harvey Banks Delta Pumping24

Plant (SWP) and the Central Valley Project’s Tracy Pumping Plant (CVP). The opera-25

tors of the pumps attempt to keep entrainment-related mortality below levels specified as a26
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fraction of the predicted number of juvenile winter-run chinook salmon. Predictions of juve-1

nile abundance have been made using models based upon prior year escapement estimates,2

in-river samples of juveniles during outmigration, and samples of juvenile salmon taken at3

SWP and CVP (Snider and Titus 2000; Martin et al. 2001). To date, the accuracy of predic-4

tions and how best to combine information from multiple sources has not been adequately5

addressed.6

The next section describes our methodology including a more formal description of7

Bayesian hierarchical SSMs, background information and data for the winter run salmon,8

and the sequential importance sampling procedure used for making inferences. The results9

are next and are followed by discussion.10

2 Methods11

2.1 Bayesian hierarchical state-space models12

Let nt denote a vector of abundances of a population at time t where the elements of the13

vector are numbers distinguished by particular attributes, e.g., age and sex, and let yt denote14

a vector of measurements or data where the components are a function of nt. We will call15

nt the state vector and yt the observation vector. To keep the notation simple we assume16

that t=0,1,. . .,T , where T is an integer; thus the time series is regularly spaced. Irregularly17

spaced time series can be readily handled as well. A state-space model is a model describing18

the evolution of the two time series, nt and yt, where nt is first-order Markov, i.e., given all19

previous state vectors the conditional probability distribution for nt is a function of just nt−1,20

and the probability distribution for yt is expressed as a function of nt. More succinctly, a21

non-hierarchical SSM can be characterized in terms of probability density or mass functions22
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(pdf’s):1

Initial state pdf : g0(n0, θ)2

State process pdf : gt(nt|nt−1, θ)3

Observation process pdf : ft(yt|nt, θ),4

where θ is a vector of time invariant parameters for the state and observation processes which5

can include vital rates and observation variances, for example.6

In the above formulation the parameters θ are assumed constant or time invariant. Thus7

the formulation reflects demographic stochasticity and observation uncertainty. Environ-8

mental stochasticity is added by allowing at least some of the components of θ to vary with9

time, say θt = (ψt, η), where ψt are time varying. Another pdf, h(ψt|Γ), is added to describe10

the variation in ψt, where Γ is a vector of hyperparameters and h is sometimes referred to11

as a hyperdistribution. The resulting model is a hierarchical SSM (Newman 2000; Rivot et12

al. 2004).13

A priori uncertainty about parameters, including hyperparameters, and state values is14

specified by means of prior distributions. Prior distributions for all states are implicitly15

defined given priors for θ and n0 alone. The combination of prior distributions, the hyper-16

distribution for parameters, and the state-space model is a Bayesian hierarchical state-space17

model, which we summarize as follows.18

Prior pdfs for parameters : π(η,Γ) (1)19

Hyperdistribution pdf : h(ψt|Γ) (2)20

Initial state pdf : g0(n0|θ0) (3)21

State process pdf : gt(nt|nt−1, θt) t = 1, 2, . . . , T (4)22

Observation process pdf : ft(yt|nt, θt), t = 1, 2, . . . , T. (5)23
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Inference about the states and parameters is made conditional on the observations. All1

relevant information can be found from the posterior distribution for the states and param-2

eters, namely,3

π(n0:T , η,Γ, ψ0:T |y1:T ) ∝ π(η,Γ)h(ψt|Γ)g0(n0, θt)
T∏

t=1

gt(nt|nt−1, θt)ft(yt|nt, θt), (6)4

where the subscripts (0 : T ) and (1 : T ) denote a sequence of values from 0 to T or 1 to T .5

In the state-space modeling literature inferences about the states made conditional on the6

entire time series of observations is known as smoothing, whereas inference about the state7

at time t, nt, based on data just up to time t, y1:t, is known as filtering.8

Calculation of the posterior distribution is analytically intractable in most situations and9

simulated inference procedures such as MCMC (Gilks et al. 1996) or sequential importance10

sampling (SIS) (Liu and Chen 1998) are used instead. For the application to salmon we use11

a variation on SIS (Liu and West 2001) and describe the details of the implementation later.12

2.2 Winter chinook salmon life history13

The state process pdf used in the SSM is based on a model for the life history of winter14

chinook salmon and we provide some background on the life history before presenting a15

mathematical formulation.16

The life history of Sacramento River winter chinook is unique among chinook salmon17

(Healey 1991). Maturing fish enter freshwater in winter and migrate far upstream, where18

they spawn in late spring. Eggs incubate during the summer, and juveniles begin migrating19

downstream in the fall, and they enter the ocean before the following summer. Juveniles20

spend one to three summers at sea before returning to spawn. We model this life history21

on a relatively coarse annual scale (see Figure 2). Let t denote the time index for a given22

annual period, where increments to the index are between the end of the escapement period23

and the beginning of the period of juvenile outmigration (late summer). In a given year24
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the abundances of the salmon are distinguished by eleven distinct and non-overlapping cat-1

egories: outmigrating juveniles (Jt), immature ocean dwelling fish (Oast), and adult returns2

or escapement (Sast), where a denotes age (2, 3, or 4) and s denotes sex (m,f).3

The life history of a year t cohort begins with the juvenile freshwater stage. Survivors4

to year t+1 are partitioned into four sex and maturation categories: O2m(t+1), O2f(t+1),5

S2m(t+1), S2f(t+1). For year t+2, survivors from the previous year’s ocean residents are again6

partitioned into immatures and escapement. The final year of the cohort is t+3 and it7

contains the prior year’s ocean survivors who then (are assumed to) mature with certainty.8

In Figure 2 a schematic of the life history of a given cohort is shown. The model pa-9

rameters are related to the three stochastic processes of birth, survival, and maturation.10

The birth parameters (not shown in Figure 2) include productivity and density dependent11

parameters, as well as a variance parameter reflecting stochastic variation in reproductive12

success. The parameters φa (a=2,3,4) are the expected annual survival rates from age a− 113

to a, pm is the proportion of males, and ρas is the expected probability of an age a, sex s14

fish maturing. The survival probabilities include natural and fishing mortality, but due to15

the endangered status of the stock and the fact that current ocean fisheries’ management is16

designed to minimize impact on winter chinook salmon, fishing mortality is believed to be17

small relative to natural mortality. In the absence of sizeable CWT recovery information,18

and a model that links fishing effort or season length to harvest rate, the φa’s cannot be19

meaningfully partitioned into natural survival rates and fishery survival rates.20

The schematic in Figure 2 does not make explicit two potentially important mortality21

processes, mortality of juveniles at the export pumps (especially CVP and SWP) and ocean22

harvest. Because of these sources of mortality and variation in fisheries’ effects, survival and23

maturity parameters vary between years, a reflection of environmental stochasticity; i.e.,24

more accurate notation is φat and ρast. Pump-related mortality is absorbed in the φ2t term.25



Stochasticity in population dynamics models Newman and Lindley 9

2.3 Data1

Data for winter run chinook salmon come from samples taken of freshwater juveniles and2

mature freshwater returns (Table 1). The juvenile data arise from in-river sampling; for3

seven of nine years between 1996 and 2004, rotary screw traps were placed directly behind4

Redd Bluff Diversion Dam (Martin et al. 2001; Gaines and Poytress 2004) to collect samples5

of outmigrating juvenile salmon in the Sacramento River. Chinook salmon of different races6

(winter, spring, fall, and late-fall) were recovered by the traps and identification of juveniles7

as to race was inexact, based largely upon classification rules that are functions of fish length8

and time of year and partially upon coded-wire tag information, the latter coming from9

releases from Livingston Stone National Fish Hatchery. Juvenile abundance is estimated in10

terms of fry equivalents (Martin et al. 2001) and estimates are essentially stratified random11

sample expansions of weekly estimates, which in turn are based on a model for trap efficiency12

as a function of water flow. Trapping takes place over several months and over time fish13

mature to become pre-smolts and smolts. Pre-smolts and smolts (defined to be > 45mm FL)14

are multiplied by a factor of 1.69 to become fry equivalents. Such a conversion of pre-smolts15

and smolts to fry introduces additional error into the estimates since pre-smolts and smolts16

recovered late in the outmigration period are presumably a smaller fraction of surviving fry17

than are pre-smolts and smolts recovered early in the outmigration period. Also relevant to18

juvenile production is the fact that since 2002 the number of hatchery-reared females (from19

Livingston Stone Fish Hatchery) spawning naturally in the river, so-called hatchery strays,20

has increased enough that their contribution to juvenile production may be non-ignoreable.21

There are two primary sources of adult return data, ladder counts at Red Bluff Diversion22

Dam combined with recoveries at a fish trap by the dam and female carcass mark-recovery23

data (Killam and Harvey-Arrison 2005). Ladder counts have been made since 1967. Multiple24

races of chinook salmon return to the dam and separation of races is based on time of year25
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and phenotypical characteristics of trap-captured salmon (including color, scale condition,1

and relative degree of sexual maturation, (Killam and Harvey-Arrison, 2005)). Beginning2

in 1986, the operational period of the ladder during the winter chinook salmon migration3

period was greatly reduced and the operational period since then is estimated to cover the4

last 15% of the migration period (from week 20 through week 37). The estimated winter5

chinook salmon escapement for 1986 on then is calculated by multiplying the total ladder6

counts during the observation period by fish trap-based proportion of winter chinook salmon7

and then dividing by 0.15. The 15% figure is based on data collected during the last five8

years of continuous ladder operation. Given that the standard deviation of the fractions seen9

after week 20 is 0.187, it can be shown analytically that the expected coefficient of variation10

in the estimated total return based on the expanded ladder counts is around 125% . Using11

the fish trap data, the estimated return to RBDD is further partitioned by sex and age class12

(Doug Killam, personal communication). There are two assigned age classes, age 2 and ages13

3 and 4 combined, and assignment is based on length (fish less than 61 cm FL are assigned14

age 2).15

The carcass mark-recovery (M/R) data have been used to make a Jolly-Seber estimate16

of female adult returns for the years 2001-2004 (Killam and Harvey-Arrison 2005). Similar17

to the RBDD estimates, the M/R estimates are partitioned into two age classes, age 2 and18

ages 3 and 4 combined. The M/R estimates of female returns are consistently higher than19

the corresponding RBDD estimates, but standard errors have not been calculated for either20

set of estimates. The Jolly-Seber estimates have become the official figures used by the21

California Department of Fish and Wildlife since 2001, but the RBDD estimates are still22

calculated to maintain continuity of the data base and to detect long term trends.23

A final item of data used for the modeling is a fecundity-length function estimated from24

a sample of female returns (Frank Fisher, personal communication).25



Stochasticity in population dynamics models Newman and Lindley 11

2.4 Chinook salmon SSM1

The different components of the Bayesian hierarchical SSM are first described individually.2

Table 2 summarizes the SSM in terms of pdfs and parallels the general formulation shown3

in equations (1)-(5).4

State process5

There are eleven components in the state vector, nt, and they are the abundances of different6

ages and stages comprising the population mentioned previously:7

n′t = (Jt, O2ft, S2ft, O2mt, S2mt, O3ft, S3ft, O3mt, S3mt, S4ft, S4mt) ,8

Thus the state vector includes contributions from four successive cohorts, they are progeny9

of spawners in years t-4, t-3, t-2, and t-1. The pdf gt(nt|nt−1) is vector-valued with six in-10

dependent pdfs for the following sets of components: Jt, (O2ft, S2ft, O2mt, S2mt), (O3ft, S3ft),11

(O3mt, S3mt), S4ft, and S4mt . The sex ratio amongst juveniles was assumed 1:1.12

The deterministic structure for Jt was a Beverton-Holt stock and recruitment model13

expressed in terms of egg production as a function of female returns, with a distinction14

made between eggs produced by age 2 females (assumed less than 61 cm FL) and eggs15

produced by ages 3 and 4 females. Mathematically,16

E[Jt] =
Ft−1α

1 + βFt−1

,17

Ft = (S2f,t−1 +H2f,t−1)× E2 + (S3f,t−1 + S4f,t−1 +H3+4,f,t−1)× E3,4,18

where E2=3205 and E3,4=6304 are the estimated average number of eggs for females less than19

61 cm FL and greater than or equal to 61 cm FL, respectively. H2f,t−1 and H3+4f,t−1 are the20

estimated number of age 2, and ages 3 and 4 combined, hatchery strays. The stochastic for-21

mulation was a discretized bias-corrected lognormal distribution with coefficient of variation22

CVBH . Note, if Y ∼ Lognormal(µ,σ2) where σ2=log(CV 2 + 1), then
√
V ar(Y )/E(Y )=CV .23
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The age 2 components, (O2mt, S2mt, O2ft, S2ft), were assumed to be from a multinomial1

distribution drawn from the previous years juveniles, Jt−1, where the parameters were a com-2

bination of sex assignment (female with probability fixed at 0.5), survival, and maturation.3

The survival and maturation parameters were random, reflecting environmental stochasticity4

in addition to the demographic stochasticity characterized by the multinomial distribution.5

Similarly the age 3 components, (O3mt, S3mt) and (O3ft, S3ft), were generated from two tri-6

nomial distributions drawn from the previous year’s non-maturing age 2 males, O2m,t−1, and7

age 2 females, O2f,t−1. Again survival and maturation rates were random. Likewise the age 48

components, S4mt and S4ft, were binomial random variables with the survival rate random.9

Hyperdistributions and prior distributions10

The survival and maturation rates are random effects and correspond to the ψt in equation11

(2). Such values are necessarily restricted to (0,1), and Beta distributions were used for12

these rates. The parameters of the Beta distribution are themselves unknown values and13

uniform prior distributions were used (i.e., these distributions correspond to π(·) in equation14

(1)). The bounds of the uniform prior distributions were chosen such that the expected15

values corresponded to values used previously (Newman et al. in press) and the coefficient16

of variation was 50%.17

Uniform priors were also used for the other, fixed effect parameters with the parameters18

of the uniform in most cases chosen such that the expected values generally matched those19

of priors used previously (Newman et al. in press).20

Prior distributions for the initial states were generated from prior distributions for the21

number of spawning females for the four years prior to 1992. From these spawning numbers22

the number of juveniles, age 2, age 3, and age 4 fish could be progressively generated. Details23

are shown in Table 2; Rivot et al. (2004) and Newman et al. (in press) describe essentially24
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the same approach to initialization.1

Observation process2

The observation vector had seven components which were the estimates of outmigrating3

juveniles based on the rotary screw trap samples, the estimates of returning mature fish4

distinguished by two age classes and sex based on the RBDD ladder counts and fish traps, and5

the estimates of returning females distinguished by two age classes based on the carcass-based6

M/R samples. Lognormal distributions were used for all the estimates with the assumption7

that the estimates were unbiased for the unknown state values. For the RBDD ladder and8

fish trap based estimates one coefficient of variation was assumed, CVÂ−RBDD, while different9

coefficients of variation were used for the juvenile estimates, CVĴ , and the M/R estimates of10

female returns, CVÂ−M/R.11

2.5 Parameter and state estimation12

To generate samples from the posterior distributions for the states, parameters, and random13

effects, a variation on sequential importance sampling, SIS, (Liu and Chen 1998) that com-14

bines SIS with kernel smoothing of the parameters was used. The algorithm is given in Liu15

and West (2001) and here we sketch the essentials of the implementation beginning with16

an overview of the idea of SIS. We note that these inference procedures are also known as17

particle filters or particle generators and the volume edited by Doucet et al. (2001) includes18

many papers devoted to this subject.19

We begin with the objective of generating a sample from a particular distribution, a20

target distribution, with pdf f(x). With importance sampling one generates a sample from21

an “importance” distribution with pdf π(x) which has support including that of f(x). Denote22

the generate sample values by x∗i , i = 1, . . . , N . An (approximate) sample from f(x) can be23
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generated by resampling the x∗i ’s, bootstrap resampling, with weights, w∗i , proportional to1

f(x∗i )/π(x∗i ). Such a procedure is sometimes referred to as Sampling Importance Resampling2

or SIR (Rubin, 1988). The choice of the importance distribution affects the Monte Carlo3

error, the variation between samples of the same size, and the closer π(x) is to f(x) the4

smaller that variation (Ripley 1987).5

In the case of state-space models, in particular, the target distribution is usually high6

dimensional and finding a single importance distribution to generate the vector that will not7

have large Monte Carlo error can be extremely difficult at best. SIS is a divide and conquer8

solution to this problem: sequentially generate components of the target distribution using9

importance sampling for each component and sequentially calculate the weights needed for10

resampling. For example, consider a univariate SSM with T time periods. The objective is11

to generate a sample from the smoothed distribution with pdf g(x1:T |y1:T , x0, θ), where for12

simplicity assume x0 and θ are known. A sample value for x1 is generated from a univariate13

importance distribution with pdf π1(x1) and a weight w1(x1) is calculated from f(y1|x1)g(x1|x0)
π1(x1)

.14

Then a sample value for x2 is generated from another importance distribution with pdf15

π2(x2); an updated weight is calculated as follows: w2(x1, x2) = f(y2|x2)g(x2|x1)
π2(x2)

∗w1(x1). Repeat16

until time T and resample the generated vectors with weights proportional to wT (x1, . . . , xT ).17

In the special case where πt(xt) = gt(xt|xt−1, θ), the state pdf, the weight simplifies to the18

observation pdf (“likelihood”) alone.19

A variation on SIS called the Auxiliary Particle Filter (APF) (Pitt and Shephard 1999)20

uses information about the state at time t provided by the observation at time t to generate21

values and increase the efficiency (lower the Monte Carlo variation) of SIS.22

To make inferences about unknown parameters θ (and the initial state x0), Liu and West23

(2001) extended the APF algorithm. At the beginning of the algorithm, values for θ are24

generated from an “importance” distribution, e.g., the prior distribution for θ. The APF25

algorithm involves resampling previously generated states, and in this case parameters, too,26
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every time period. Such a resampling reduces the number of unique parameter values (and1

for that matter the number of unique values for previously generated states). This reduction,2

also known as particle depletion, can lead to very high Monte Carlo variation. Liu and West3

mitigate this depletion by kernel smoothing the parameter values, mixing the observed values4

with a multivariate normal distribution with the same mean and covariance structure as the5

observed values. If a retained particle has n copies following resampling, kernel smoothing6

replaces those n duplicates with n slightly perturbed and usually unique values.7

In our implementation of Liu and West’s algorithm we used the prior distributions for8

generating the parameters and initial states. For a single set of hyperparameters for the9

random effects, we generated ten unique random effects values so that potentially likely10

hyperparameter values would be less likely to be removed early in the resampling process,11

something that would be more likely if only a single random effect was paired with each12

hyperparameter value. The degree of kernel smoothing was minimal, the weight given to13

the observed value was 0.985. “Excessive” kernel smoothing can lead to the situation where14

states early in the time series were generated from parameter values that have changed15

considerably by the time states later in the time series are generated, thus introducing16

considerable bias in the posterior distribution. Because all the parameters had uniform17

priors and were thus restricted to finite line segments, the parameters were mapped to the18

real number line for multivariate normal kernel smoothing, and then backtransformed after19

kernel smoothing. Letting η denote the transformed value and θ the parameter on the20

original scale, the mappings were as follows:21

η = log(θ − a)/(b− θ)22

θ =
exp(η)

1 + exp(η)
(b− a) + a,23

where θ ∼ U(a, b).24

To further reduce particle depletion, a more efficient resampling procedure known as25
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residual resampling (Liu and Chen 1998) was used, whereby a subset of particles is retained1

deterministically, i.e., those with relatively large weights are kept, and the remaining sample2

is drawn at random. Additionally, somewhat mimicking a procedure known as partial rejec-3

tion control (Liu et al. 2001), given an initial set of N particles, after year 1, a subsample of4

particles of size N1 equal to the effective sample size, ESS (Liu 2001), was randomly selected5

according the weights at that time w1(x1). This procedure was repeated until a desired6

number of particles was generated and the algorithm proceeded until the last time period7

when a random sample of size equal to the ESS at time T was drawn. The entire process8

was repeated until a final sample of approximately 120,000 was attained, a sample size with9

relatively negligible Monte Carlo variation, where the total number of initial particles was10

over 70 million.11

The algorithm was implemented in C using random variate algorithms from Devroye12

(1986), the R project source code (http://www.r-project.org), and Press et al. (1992).13

On a Unix workstation with dual 2.66 GHz processors and 2 MB of RAM, an enventual14

sample of 120,000 could be generated in around 4 hours.15

2.6 Pre-season prediction of juveniles16

The juvenile production for year T+1 can be predicted pre-season using samples from the17

posterior distribution of the spawning escapement for year T , in particular samples of S2fT ,18

S3fT , and S4fT , in combination with samples from the posterior distribution of the relevant19

parameters, namely α, β, and CVBH . Given a posterior sample of size N of female returns20

for year T and the parameters, the juvenile production can be predicted from the following21

lognormal distribution.22

J∗iT+1 ∼ Lognormal

(
log

(
F ∗iα∗

1 + F ∗iβ∗i/10, 000

)
− σ2∗i

BH

2.0
, σ2∗i

BH

)
23

F ∗i = S∗i2fT × E2 + (S∗i3fT + S∗i4fT )× E3,4), i = 1, . . . , N24



Stochasticity in population dynamics models Newman and Lindley 17

Adult returns can be estimated in a similar manner with the additional step of generating1

the random effects for survival and maturation. Using information from 1992 through 2003,2

predictions of both the juvenile outmigrants and adult returns were made for 2004.3

2.7 Other models for juvenile production4

Estimation of the juvenile production parameters, i.e., the Beverton-Holt spawner recruit5

parameters, in the context of a SSM simultaneously accounts for autocorrelation in the time6

series of spawners and recruits (juveniles) and measurement error. To determine the ef-7

fect of this accounting for autocorrelation and measurement errors, the parameters of the8

Beverton-Holt model were also estimated using maximum likelihood and Bayesian inference9

using the bias-corrected lognormal model treating estimated female spawners (more precisely,10

estimated eggs based on RBDD estimates and hatchery stray information) and estimated11

juveniles as true values, and with autocorrelation ignored. The maximum likelihood esti-12

mates (mles) were calculated using AD Model Builder (Otter Research Ltd., Sidney, BC,13

Canada) and the Bayesian posterior means were estimated using WinBUGS (Spiegelhalter14

et al. 2003) with the same priors as in the SSM (with a burn-in of 1000 and a chain length15

of 40,000).16

3 Results17

3.1 Parameter and random effects estimates18

The means and standard deviations of the posterior distributions for the parameters are19

shown in Table 3 along with prior means. Density plots of the posterior and prior distribu-20

tions of the parameters are shown in Figure 3.21
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The posterior distributions for the juvenile production parameters did differ noticeably1

from the prior distributions though the shift in mean value was slight for the density depen-2

dent parameter β. The α parameter can be interpreted as the expected survival rate from3

eggs to fry and is estimated to be 0.64 on average.4

As the table and figure both make clear, the data provide little information for estimating5

age 3 and age 4 hyperparameters, namely, the hyperparameters for φ3,t, φ4,t, ρ3f,t, and ρ3m,t.6

The posterior means for the random effects for survival did vary a moderate amount, while7

the means for the age 3 and age 4 maturation rates varied only slightly. Figure 4 shows the8

prior and posterior densities of some of the random effects parameters for a given year, and9

the influence of the priors on φ4,t and ρ3m,t is especially apparent. Given that estimates for10

age 3 and age 4 returns are aggregated, it is not too surprising that these parameters are11

difficult to estimate.12

The data, however, did provide information about the age 2 hyperparameters for survival13

and sex-specific maturation rates (Figure 3), and the resulting random effects (Figure 4).14

The expected age 2 survival rates, E[φ2t], is the same for the prior and posterior distributions,15

namely 0.5%, but the variation in the distribution is less in the posteriors. The posterior16

means for the random effects φ2t ranged from 0.15% to 0.97%. The differences between sexes17

in age 2 maturation rates were sizeable, consistent with salmon biologists’s experience, with18

the expected rates being 5.6% for females and 18.7% for males. The posterior means for19

random effects ranged from 1.1% to 11.0% for ρ2ft and from 14% to 30% for ρ2mt.20

The posterior means for coefficients of variation for the observations were 96%, 136%, and21

109% for juveniles, M/R female returns, and RBDD ladder and fish trap returns. Theoretical22

calculations of the CV for the estimated total adult return using RBDD data, based on the23

variation in the percentage of the run observed after week 19, suggest a CV of around 125%.24

The coefficients of variation are likely absorbing biases and model misspecification, however;25

e.g., using a single value for all four estimates based on RBDD ladder and fish trap data is26
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likely incorrect.1

3.2 State estimates2

The posterior means for some of the state values are plotted along with the observations in3

Figure 5. Since bias-corrected lognormal distributions were used, ideally, observations would4

on average equal the posterior means. For juveniles and age 2 returns (combined males and5

females) the fit is better than for the age 3 and 4 returns, possibly a reflection of using a6

single coefficient of variation for all four categories of RBDD data. For the age 3 and age7

4 females, for which there are two estimation procedures, the posterior means fall between8

the two sets of estimates. Biases in one or both procedure are likely given the consistent9

direction of the differences between them.10

3.3 One year ahead predictions11

Predicted values for year 2004 given 12 years of data (1992-2003) are shown in Table 4.12

The considerable uncertainty in predicted values is evident from the relatively wide intervals13

between the 5th and 95th percentiles, and the estimated values for each category fell within14

these intervals. The predictive distributions were strongly right skewed and medians are15

preferred over means.16

3.4 Alternative estimates for Beverton-Holt model parameters17

In Figure 6 the Beverton-Holt curves based on the mles and posterior means for α and β are18

plotted. The comparison of mles with posterior means is confounded by the fact that the mles19

correspond approximately to posterior modes, not means, assuming relatively uninformative20

priors, and that the posterior distributions for β and CVBH were right skewed. With these21
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cautions in mind, the mles for α, β, and CVBH were 0.59, 0.00012, and 0.51, and the1

posterior means from the non-SSM Bayesian analysis were 0.77, 0.00061, and 0.82 in contrast2

to the SSM’s posterior mean values of 0.63, 0.00088, and 0.59, with the differences in the3

estimates of the density dependence parameter (β) particularly striking. Arguably, because4

autocorrelation and measurement errors have been accounted for, the SSM’s posterior means5

are better estimates of the parameters of the assumed Beverton-Holt model.6

4 Discussion7

4.1 Multiple sources of uncertainty8

The utility of state-space models is increasingly recognized in fisheries (Mendelssohn 1988;9

Sullivan 1992; Speed 1993; Schnute 1994; Newman 1998 and 2000; Meyer and Millar 1999;10

Millar and Meyer 2000; Schnute and Kronlund 2002; Rivot et al. 2004), ecology (Calder et11

al. 2003; Clark and Bjornstad 2004), and wildlife (Besbeas et al. 2002; Thomas et al. 2005).12

As emphasized by Schnute (1994) an advantage of SSMs over previously used statistical13

procedures (for sequential fisheries data) is that SSMs account for both process variation as14

well as observation (or measurement) error.15

Process variation can be due to demographic or environmental variation. Hierarchical16

SSMs readily incorporate environmental variation by introducing a third level to the SSM17

whereby parameters of the state model, and possibly the observation model, are randomly18

generated. The hyperparameters of this third level can potentially include environmental19

covariates. Beta distributions were used for the survival and maturation probabilities; Rivot20

et al. (2004) used the multivariate extension of the beta distribution, the Dirichlet, sim-21

ilarly, for simultaneously accounting for survival and maturation to two different ages at22

return. Logit-normal models for survival (Newman 2003) and maturation are an alternative23
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approach.1

Putting the hierarchical SSM in a Bayesian framework adds a fourth level to the model2

which allows for inclusion of prior beliefs about parameters and states. Additionally, the3

resulting posterior distributions provide readily interpretable summaries of uncertainty about4

parameters and states. In the case of weakly identifiable parameters, e.g., the age 3 and age5

4 survival rates, we maintain that it is often better to incorporate uncertainty about their6

values via the inclusion of prior distributions, than to fix the parameter values.7

We did not address the issue of model uncertainty primarily because the SSM used8

was closely patterned after what we considered to be a fairly realistic life history model.9

However, alternative models could be, and have been, considered (see the Hallock and Fisher10

model in Newman et al. (in press)). Model selection and model averaging for hierarchical11

SSMs are topics for additional research. The use of information criteria, e.g., such as DIC12

(Spiegelhalter et al. 2003), AIC (Burnham and Anderson 1998), BIC and Bayes Factors13

(Kass and Raftery 1995), reversible jump Markov chain Monte Carlo (Green 1995), and14

Bayesian model averaging (Hoeting et al. 1999) are potential approaches to addressing model15

uncertainty, for selecting or averaging over models.16

Lastly, the SSM framework easily allows inclusion of multiple sources of information17

about the population components. The observation model is simply extended by adding18

additional pdfs. In a case where a component of the state vector, say, is being estimated or19

measured in two different ways and one procedure is thought to have a consistent bias while20

the other is unbiased, both estimates can be included in the model by including a parameter21

for that bias in the observation model. Thus indices of abundance can be included so long22

as unbiased estimates exist, too. If the index is more precise than the unbiased estimator,23

then that additional precision can be used advantageously. For example, suppose the RBDD24

ladder-based estimates on average underestimate returns by some unknown fraction, but25

the M/R estimates are unbiased. Then a parameter for this bias could be included and is26
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estimable; e.g., E[y3+4f,t,RBDD] = ψ(S3ft +S4ft), where ψ reflects the bias. In the application1

missing data from the different sources posed no serious problems and the model provided a2

simple means of “imputing” the unobserved states, e.g., the 2001 and 2002 juveniles.3

4.2 Fitting Bayesian hierarchical SSMs4

Currently, there are two dominant methods for fitting Bayesian hierarchical SSMs, sequential5

importance sampling (and its variants) and MCMC. One potential problem with MCMC6

is that convergence to the posterior distribution can be difficult, given the frequent high7

degree of correlation between states and parameters. In ongoing research with others we8

have found that to make the MCMC sampler efficient, considerable thought is required9

regarding the choice of proposal distributions, which parameters and/or states to update in10

blocks, whether or not to insert auxiliary variables (states), and whether or not alternative11

parameterizations are adviseable. On the other hand, Rivot et al. (2004) successfully used12

MCMC via the WinBUGS software (Spiegelhalter et al. 2003) for a relatively complicated13

SSM, but noted (Etienne Rivot, personal communication) that the choice of initial values to14

start the sampler was critical.15

Implementation of sequential importance sampling is much simpler, especially when the16

state pdfs are used as the importance samplers. The Liu and West (2001) algorithm is a rela-17

tively straightforward procedure for making inferences about the states and the parameters,18

and its inclusion of the auxiliary particle filter (Pitt and Shephard 1999) leads to a “better”19

importance sampler but still one based on state pdfs. However, the main barrier to effi-20

cient implementation of sequential importance sampling is particle depletion and subsequent21

Monte Carlo variation. Kernel smoothing of parameters partially alleviates depletion of pa-22

rameters (and could be used for states, too), but too much kernel smoothing will introduce23

bias in the posterior distributions. Residual resampling and partial rejection control further24
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mitigate Monte Carlo variation. For this particular SSM we found our variation on partial1

rejection control, whereby a good set of particles is sequentially accumulated, a pragmatic2

means of reducing Monte Carlo variation.3

The development of off-the-shelf software for fitting complex Bayesian hierarchical SSMs,4

be it using MCMC or SIS or something else, would clearly be a valuable contribution.5

4.3 Evaluation of the winter chinook salmon model6

Criticism of the SSM implemented for the winter run chinook salmon can be categorized in7

terms of the particular chosen model, including the prior distributions, and the type and8

quality of data.9

Model formulation. Beginning with the observation process model, in principal the raw10

data could be the observations rather than the estimates. The sampling procedures are11

relatively involved, however, with sampling covering an extended time period, both during12

outmigration and during spawning migration, and to directly link observations made on a13

weekly basis, for example, to the “available” state components is not easy. One would need14

to extend the state model to include a migratory timing and/or spatial component for the15

states. Given that estimates are used, the use of a single CV for all RBDD-based estimates16

is clearly an oversimplification and could partly explain the systematic difference between17

posterior means and estimates for age 3 and age 4 returns.18

For the state process model, many alternative density dependent formulations are pos-19

sible for juvenile production. The formulations can be divided into compensatory (e.g.,20

Beverton-Holt) and overcompensatory (e.g., Ricker) dynamics. Barrowman et al. (2003) ar-21

gue that for territorial fish such as coho salmon, compensatory dynamics are expected, and22

they found that the Beverton-Holt stock-recruitment function provided a much better fit to23
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an extensive coho data set than the Ricker function. Because chinook salmon defend terri-1

tories like coho salmon (Healey 1991 and references therein), we used Beverton-Holt density2

dependence in our model. Incorporating covariates, such as water flow levels at time of fry3

emergence (Speed 1993), could tighten the relationship between spawners and juveniles, too.4

Alternative probability distributions could be used for the juveniles and the other states,5

too. As mentioned previously, alternative models for the random effects for survival and6

maturation include logit-normal models and the inclusion of year-specific covariates.7

As for any Bayesian analysis alternative priors could be used. Uniform priors, while8

restricted to a finite range, were a relatively conservative approach. However, we note that9

for the random effects parameters the resulting prior distributions, beta distributions, were10

somewhat more informative choices but the range of likely values was still relatively wide.11

Type and quality of data. With regard to the type of data, separate estimates of age 312

and age 4 returns would clearly be advantageous. Age 3 and 4 survival parameters and age13

3 maturation probabilities would be more identifiable. Additionally, if estimates continue to14

be used as observations, standard errors need to be calculated in all cases; the inclusion of15

estimate-specific standard errors would be less generic than a single coefficient of variation.16

Somewhat less obvious, the way fish are sampled at the fish trap is somewhat similar to17

temporally stratified multinomial sampling and non-zero covariances must exist between the18

estimates of age 2 females, age 2 males, and so on, but these have been ignored. Currently,19

however, standard errors, let alone covariances, are not currently available for the adult20

return estimates (and only partially available for juvenile estimates).21

With regard to quality of data, the juvenile estimates are in terms of fry equivalents22

whereby fish over a certain length are classified as pre-smolts or smolts and a single fish is23

expanded by a fixed value irregardless of when it was recovered. Arguably, time dependent24

expansions would be an improvement. Run mis-identification is another problem. Three25
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other seasonal races of chinook salmon occupy portions of the Sacramento river system1

during some of the same time periods. The identification of a returning salmon as being2

winter run, instead of say a late fall run, is not an exact science and the degree to which3

misclassification errors contribute to the observation noise is unknown.4

Use and advantages of the model. We end on a more positive note by contrasting the5

potential use of a Bayesian hierarchical state-space model with current management pro-6

cedures. Currently, NOAA Fisheries, in its annual forecast of juvenile production, simply7

multiplies the estimated spawning escapement by a factor that reflects the fraction of es-8

capement that is female, average fecundity, and survival from egg to the delta, where the9

pumps are located (Gaines and Poytress 2004). Prior to 2001, this factor was applied to10

the RBDD estimates of escapement, but since then to the carcass-based M/R estimates. In11

some years, juvenile production is directly estimated in-season from catches in rotary screw12

traps, but funding vagaries prevented implementation in 2001 and 2002. Our method, with13

its ability to incorporate multiple data sources with missing values, has made full use of all14

of the relevant data in a consistent and statistically rigorous way. Additionally, the SSM15

could be extended to include partial in-season juvenile catch information so that in-season16

predictions could be used to modify or update the pre-season predictions.17

The statistical foundations of our model allow calculation of valid interval estimates that18

can provide managers with a context for assessing observed captures versus those predicted19

by the model from the data. Prediction intervals for juvenile abundance (Table 4) show that20

the forecasts contain a lot of uncertainty. Currently, managers have only point forecasts to21

guide their actions. It is possible that under some hydrological conditions, a significantly22

larger fraction of outmigrants could be impacted by pumping than is the case on average,23

making it important to know whether observed catches at the pumps are consistent with24

expectation or indicate a serious problem that might justify curtailing pumping.25
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We note that the forecasts of ocean abundance by age that our model produces are1

potentially useful to managers of salmon ocean fisheries off California. A common method of2

estimating ocean abundance of salmon prior to the fishing season is to use a linear regression3

model that relates the returns of age a fish in year t to the returns of age a+ 1 fish in year4

t+1 (Peterman 1982, Adkison and Peterman 2000). For winter chinook, by the time mature5

age 2 fish are enumerated, the fishery has already impacted those fish destined to return6

at age 3 the following year, and relatively few fish return at age 4. Such sibling regression7

models are therefore not useful for winter chinook, and the only prospect for forecasting8

ocean abundance is to base the forecast on spawner and juvenile data, although variability9

in post-smolt survival may limit the usefulness of such forecasts (MacDonald et al. 1987).10
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Table 1: Juvenile outmigrant and adult return estimates. The data sources are Gaines and

Poytress (2004) and Bill Poytress (personal communication) for juveniles (in fry equivalents)

and Doug Killam (personal communication) for adult estimates. These data, including

straying hatchery female returns and egg and fork length data, are available electronically

at http://www.creem.st-and.ac.uk/ken/DATA/data.html.

RBDD estimates M/R estimates

Obs’n Juveniles Age 2f Age 3f+4f Age 2m Ages 3m+4m Age 2f Ages 3f+4f

Year (fry)

1992 NA 38 639 39 480 NA NA

1993 NA 22 171 111 73 NA NA

1994 NA 20 16 79 33 NA NA

1995 NA 0 759 29 467 NA NA

1996 1,816,984 65 402 564 175 NA NA

1997 469,183 23 300 298 214 NA NA

1998 2,205,162 385 1098 529 867 NA NA

1999 5,000,416 559 428 1907 395 NA NA

2000 1,366,162 172 344 517 172 NA NA

2001 NA 218 959 3401 654 29 4655

2002 NA 366 3897 915 2720 42 5450

2003 8,205,609 315 2897 2522 2535 39 5226

2004 5,826,672 33 783 3784 1076 40 3260



Table 2: Hierarchical model for winter run chinook

salmon. The notation [ ] indicates rounding to the nearest

integer. The parameters σ2 of the lognormal distribution

are equivalent to log(CV 2 + 1). Other notation is given

in text.

Prior pdfs for parameters

α ∼ U(0, 1.0) β ∼ U(0, 0.002)

CVBH ∼ U(0, 2.0)

φ2a ∼ U(0.208, 2.892) φ2b ∼ U(41.264, 574.736)

φ3a, φ4a ∼ U(0.134, 1.866) φ3b, φ4b ∼ U(0.201, 2.799)

ρ2fa, ρ2ma ∼ U(0.214, 2.986) ρ2fb, ρ2mb ∼ U(1.943, 27.057)

ρ3fa, ρ3ma ∼ U(0.402, 5.598) ρ3fb, ρ3mb ∼ U(0.268, 3.732)

ρ3ma ∼ U(0.402, 5.598) ρ3mb ∼ U(0.268, 3.732)

CVĴ , CVÂ−M/R, CVÂ−RBDD ∼ U(0, 2.0)

Hyperdistribution pdfs

φ2t ∼ Be(φ2a, φ2b) φ3t ∼ Be(φ3a, φ3b) φ4t ∼ Be(φ4a, φ4b)

ρ2ft ∼ Be(ρ2fa, ρ2fb) ρ2mt ∼ Be(ρ2ma, ρ2mb)

ρ3ft ∼ Be(ρ3fa, ρ3fb) ρ3mt ∼ Be(ρ3ma, ρ3mb)

Initial state pdf

continued on next page



Table 2: continued

F−j ∼ U(250 ∗ 0.1, 2000 ∗ 0.1) ∗ E2 + U(250 ∗ 0.9, 2000 ∗ 0.9) ∗ E3,4, j = 4, 3, 2, 1,

E2 = 3025, E3,4 = 6304

J−j =
[

F−j−1 α

1+β/10,000 F−j−1

]
, j = 3, 2, 1, 0

(O2f,−j, S2f,−j, O2m,−j, S2m,−j) ∼ Multinomial(J−j−1, 0.5φ2,−j(1− ρ2f,−j),

0.5φ2,−jρ2f,−j, 0.5φ2,−j(1− ρ2m,−j), 0.5φ2,−jρ2m,−j), j = 2, 1, 0

(O3f,−j, S3f,−j) ∼ Trinomial(O2f,−j−1, φ3,−j(1− ρ3f,−j), φ3,−jρ3f,−j), j = 1, 0

(O3m,−j, S3m,−j) ∼ Trinomial(O2m,−j−1, φ3,−j(1− ρ3m,−j), φ3,−jρ3m,−j), j = 1, 0

S4f,0 ∼ Binomial(O3f,−1, φ4,0)

S4m,0 ∼ Binomial(O3m,−1, φ4,0)

State process pdf

Ft = (S2f,t−1 +H2f,t−1) ∗ E2 + (S3f,t−1 + S4f,t−1 +H3+4,f,t−1) ∗ E3,4)

Jt ∼ [Lognormal]
(

log

(
Ft−1 α

1+β/10,000 Ft−1

)
−

σ2
BH
2

,σ2
BH

)
(O2ft, S2ft, O2mt, S2mt) ∼ Multinomial(Jt−1, 0.5φ2t(1− ρ2ft)0.5φ2tρ2ft, 0.5φ2t(1− ρ2mt), 0.5φ2tρ2mt)

(O3ft, S3ft) ∼ Trinomial(O2f,t−1, φ3t(1− ρ3ft), φ3tρ3ft)

(O3mt, S3mt) ∼ Trinomial(O2m,t−1, φ3t(1− ρ3mt), φ3tρ3mt)

S4ft ∼ Binomial(O3f,t−1, φ4t)

S4mt ∼ Binomial(O3m,t−1, φ4t)

Observation process pdf

yJt ∼ Lognormal
(
log (Jt)−

σ2
Ĵ

2
), σ2

Ĵ

)
yS−RBDD,ast ∼ Lognormal

(
log (Sast)−

σ2
Â−RBDD

2
, σ2

Â−RBDD

)
a = 2, 3 + 4, s = f,m,

yS−M/R,ast ∼ Lognormal
(
log (Saft)−

σ2
Â−M/R

2
, σ2

Â−M/R

)
a = 2, 3 + 4

1



Table 3: Posterior means and standard deviations for parameters of winter run chinook

salmon SSM based on observation years 1992-2004.

Parameters Prior Posterior

Mean Mean Median SD

α 0.50 0.63 0.62 0.18

β 0.001 0.00088 0.00080 0.00053

CVBH 1.00 0.59 0.47 0.45

φ2a 1.55 1.73 1.71 0.56

φ2b 308 378 393 133

φ3a 1.00 1.18 1.20 0.39

φ3b 1.50 1.48 1.46 0.74

φ4a 1.00 1.08 1.11 0.48

φ4b 1.50 1.48 1.45 0.75

ρ2fa 1.60 1.14 1.04 0.51

ρ2fb 14.50 19.5 20.7 5.36

ρ2ma 1.60 2.23 2.32 0.51

ρ2mb 14.50 9.66 8.01 5.91

ρ3fa 3.00 3.59 3.77 1.36

ρ3fb 2.00 2.07 2.08 0.97

ρ3ma 3.00 3.32 3.42 1.41

ρ3mb 2.00 2.01 2.03 0.92

CVĴ 1.00 0.95 0.90 0.47

CVÂ−M/R 1.00 1.44 1.47 0.36

CVÂ−RBDD 1.00 1.08 1.03 0.33



Table 4: One year ahead predictions for 2004 based on posterior distributions of states and

parameters estimated from 1992-2003 data (based on SIS with 120,000+ particles). The first

lines for each state show the predictions without observation error. The second (and third)

lines contain the percentiles with observation error; estimated females with observation error

included are listed separately for the RBDD ladder counts and the M/R estimates.

Juveniles (1000s)
2004 Estimate Expected Prediction Percentiles

Value 5th 50th 95th

5,688 1,020 4,311 13,929
5,827 5,688 385 3,133 17,783

Age 2 Females
2004 Estimate Expected Prediction Percentiles

Value 5th 50th 95th

1,257 13 466 4,891
(RBDD) 33 1,257 8 314 5,046
(M/R) 40 1,257 4 223 4,354

Age 2 Males
2004 Estimate Expected Prediction Percentiles

Value 5th 50th 95th

3,926 121 1,845 14,211
(RBDD) 3,784 3,985 60 1,255 15,131

Age 3+4 Females
2004 Estimate Expected Prediction Percentiles

Value 5th 50th 95th

4,274 353 2,816 12,877
(RBDD) 783 4,274 156 1,918 15,266
(M/R) 3,260 4,274 98 1,497 16,374

Age 3+4 Males
2004 Estimate Expected Prediction Percentiles

Value 5th 50th 95th

3,291 256 2,092 10,242
(RBDD) 1,076 3,291 116 1,433 11,730



Figure 1: Sacramento River and major dams. Historical spawning areas for winter run

chinook salmon included rivers above Shasta Dam.
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Figure 2: Schematic of winter-run chinook salmon life history. S denotes spawners with

subscripting for age, sex, and year of spawning, J are juveniles, while O are immature fish

remaining in the ocean. The parameters φ denote survival (age-specific), the ρs are age- and

sex-specific maturation probabilities, and pm is the probability of a fish being male.

Numbers Numbers Numbers Numbers

Year t-1 Year t Processes Year t + 1 Processes Year t + 2 Processes Year t + 3

(Males)
φ2,t+1pmρ2m→ S2m(t+1)

φ3ρ3m→ S3m(t+2)

φ2,t+1pm(1− ρ2m)
→ O2m(t+1)

↗
↘

S2f(t−1) ↘
φ3(1− ρ3m)

→ O3m(t+2)
φ4→ S4m(t+3)

S3f(t−1) → Jt

↗
↘

S4f(t−1) ↗
φ2,t+1(1− pm)ρ2f→ S2f(t+1)

φ3ρ3f→ S3f(t+2)

(Females)
φ2,t+1(1− pm)(1− ρ2f )

→ O2f(t+1)

↗
↘

φ3(1− ρ3f )
→ O3f(t+2)

φ4→ S4f(t+3)



Figure 3: Posterior (solid lines) and prior (dashed) densities of the parameters. Vertical lines

mark the posterior means. Posterior densities are based upon 120,000+ particles.
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Figure 4: Posterior (solid lines) and prior (dashed) densities of random effects for 1998. Pos-

terior mean values are shown above each plot. Posterior densities are based upon 120,000+

particles.
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Figure 5: Posterior means (solid lines) for states along with observations (dashed lines). The

age 2 returns are the sum of male and female returns, as are the age 3 and 4 returns. The

dotted line in the bottom plot, for age 3+4 females, shows the M/R estimates of females.
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Figure 6: Fitted Beverton-Holt spawner-recruit curves, Juv = αEggs
1+β/10,000∗Eggs

, based on poste-

rior means from the SSM (solid line), the posterior means from a Bayesian analysis ignoring

autocorrelation and measurement errors (dotted line), and maximum likelihood estimates

based on a bias-corrected lognormal distribution (dashed line). The juvenile estimates (7

years) are shown as circles and the SSM posterior means for juveniles (13 years) are shown

as triangles.
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